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ABSTRACT: Air pollution affects billions of people worldwide,
yet ambient pollution measurements are limited for much of the
world. Urban air pollution concentrations vary sharply over short
distances (≪1 km) owing to unevenly distributed emission
sources, dilution, and physicochemical transformations. Accord-
ingly, even where present, conventional fixed-site pollution
monitoring methods lack the spatial resolution needed to
characterize heterogeneous human exposures and localized
pollution hotspots. Here, we demonstrate a measurement
approach to reveal urban air pollution patterns at 4−5 orders of
magnitude greater spatial precision than possible with current
central-site ambient monitoring. We equipped Google Street
View vehicles with a fast-response pollution measurement
platform and repeatedly sampled every street in a 30-km2 area of Oakland, CA, developing the largest urban air quality data
set of its type. Resulting maps of annual daytime NO, NO2, and black carbon at 30 m-scale reveal stable, persistent pollution
patterns with surprisingly sharp small-scale variability attributable to local sources, up to 5−8× within individual city blocks. Since
local variation in air quality profoundly impacts public health and environmental equity, our results have important implications
for how air pollution is measured and managed. If validated elsewhere, this readily scalable measurement approach could address
major air quality data gaps worldwide.

1. INTRODUCTION

Air pollution is a major global risk factor for ill-health and
death.1−4 Air pollution measurements are crucial for epidemi-
ology and air quality management, but the extent of ground-
based air pollution observations is limited.5,6 For many
developing-country regions, especially in populous parts of
Asia and Africa, robust air quality monitoring is largely absent.5

Even for high-income regions, ambient monitors are generally
sparsely sited. For the 60% of the U.S. census urban areas with
continuous regulatory monitoring, there are a mean of ∼2−5
monitors per million people and 1000 km2 (Supporting
Information (SI) Table S1). However, primary air pollutant
concentrations in cities can vary sharply over short distances
(∼0.01−1 km) owing to unevenly distributed emissions sources,
dilution, and physicochemical transformations.7−10 Such gra-
dients are not well represented with routine ambient measure-

ments, but have important implications for exposure assessment,
epidemiology, air quality management, and environmental
equity.10−13

Advances in air pollution exposure assessment techniques over
the past two decades have helped address limitations of (i) data
coverage and (ii) spatial resolution that are associated with
central-site ambient monitoring.10,14 These methods include
satellite remote sensing (RS), chemical transport models
(CTMs), land-use regression (LUR)models, and direct personal
exposure measurements.14 Each of these approaches has distinct
advantages and limitations. Satellite RS instruments and CTMs
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are spatially coarse (>1−10 km resolution), and cannot
characterize the fine-scale gradients (10−300 m) that drive
population exposure to local emissions such as traffic. Satellites
are unable to measure some pollutants of key health concern
(e.g., black carbon, ultrafine particles). Dispersion models and
CTMs are only as reliable as their underlying emissions
inventories, and thus cannot reveal unexpected sources.
Empirical and geostatistical models such as LUR and kriging
can estimate concentrations at high spatial resolution.10,14−17

However, these models provide limited temporal information,
often require local training data sets to be available or collected,
and struggle to predict the tails of air pollution distributions,
especially where idiosyncratic local sources exist. Alternative
methods to measure how air pollution concentrations vary within
cities and neighborhoods could complement these existing
techniques and fill important data gaps.18,19

We explore here the potential of routine mobile monitoring
with fleet vehicles for measuring time-integrated concentrations
at high spatial resolution. The use of vehicles for mobile air
pollution sampling dates to the 1970s or earlier,20 and has been
common since the early 2000s.12,13,21−27 However, even
purpose-built “mobile labs” are rarely deployed for extended
periods, and often depend on trained research staff as
drivers.25−28 As a result, few mobile monitoring data sets have
sufficient repetition frequency or statistical power to precisely
reveal consistent long-term spatial patterns over wide areas. We
consider here an alternative approach, equipping professionally
driven fleet vehicles with air quality instruments, repeatedly
sampling every street of an urban area, and applying data
reduction algorithms to distill stable long-term spatial patterns
from time-resolved data. This approach has been implemented
for public transportation vehicles along fixed routes, including
trams in Karlsruhe and Zürich.24,29 We report here on a 1 year
pilot study in the San Francisco Bay Area using extensive route-
free driving representative of a broad sample of city streets. In
addition to testing the feasibility of this approach at scale, we
explicitly aimed to “overdesign” our sampling scheme to enable
quantitative characterization of trade-offs between sampling
frequency and measurement precision/accuracy. (A similar
oversampling approach has been tested on shorter cycling routes
in the U.S. and Belgium).15,30,31 We demonstrate that our
measurement approach is capable of precisely (±10−20% of
median) revealing urban pollution gradients at very fine ∼30 m
scales, or 104−105× greater spatial resolution than with urban-
ambient monitors. Our results corroborate current under-
standings and also provide new insights into the spatial variability
of urban air pollution.

2. MATERIALS AND METHODS
In brief, we equipped two Google Street View (SV) mapping
vehicles with an Aclima environmental intelligence fast-response
pollution measurement and data integration platform (Aclima,
Inc., San Francisco, CA). Using these vehicles, we repeatedly
measured weekday daytime concentrations of black carbon
particles (BC), NO, and NO2 over 1 year for every road within
diverse residential, commercial and industrial areas of Oakland,
CA. BC, NO, and NO2 are key health relevant pollutants whose
sources include vehicular traffic, shipping, industrial combustion,
cooking, and heating. The large resulting data set (3 × 106 1-Hz
measurements within a 30 km2 area; 24 000 total vehicle-km on
750 road-km) is unique among mobile monitoring studies in its
very high coverage density and repeat-visit frequency (average of
31 days and 200 1-Hz measurements for each 30 m of road, SI

Figure S2). Through data reduction and bootstrap resampling32

algorithms, we compute median ± standard error (SE) annual
daytime concentrations for ∼21 000 unique road segments.
While instantaneous pollution levels vary rapidly in on-road
environments, by repeatedly sampling each road and computing
long-term medians, we obtained stable, precise (±10−20%)
estimates of time-integrated pollution at fine 30 m spatial scales.
Overall, these data reduction methods produce maps of
systematic spatial variation in long-term air pollution that are
robust to the stochastic temporal variability in the underlying 1-
Hz data.

2.1. Measurement Platform. Two Google Street View
(SV) vehicles were equipped with the Aclima Ei measurement
and data acquisition platform. This platform provides data
management, quality control, and visualization functions,
facilitating extensive, routine measurements. In the present
configuration, monitors employed were fast-response (1 Hz)
laboratory-grade analyzers: BC was measured using a photo-
acoustic extinctiometer, NO was measured using chemilumi-
nescence, and NO2 was measured using cavity-attenuation
phase-shift spectroscopy. The inlet system was designed to
minimize self-sampling and particle sampling losses. Further
details of the instrumentation design, routine calibrations, and
QA/QC protocols/algorithms are provided as SI.

2.2. Study Area Description and Sampling Protocol.
Sampling during the 1 year study duration emphasized three
main areas within Oakland, CA: West Oakland (WO, ∼10 km2),
Downtown Oakland (DT,∼5 km2), and East Oakland (EO,∼15
km2).WO is bounded bymajor interstate highways (I-880, I-980,
I-580), the fifth-largest U.S. container port, and associated rail
and trucking facilities. Residential blocks are interspersed with
industries in this lower-income neighborhood. DT has mixed
residential and commercial mid- and high-rise buildings. EO is
divided between industrial and mixed-income residential areas.
We undertook mobile monitoring on weekdays from May 28,

2015 toMay 14, 2016. During routine operation, cars left garages
in either Mountain View, CA or San Francisco, CA at around
9:00 AM local time and drove to Oakland, CA for ∼6−8 h of
driving. Barring operational constraints (e.g., maintenance), two
cars were operated simultaneously on each driving day.
Drivers were provided daily driving assignments consisting of

polygons (∼1−5 km2) in which the driver was tasked with
driving every road at least once. Drivers were instructed to drive
in the normal flow of traffic. Mean speeds were ∼25 km h−1 on
surface streets and ∼88 km h−1 on highways. Routine sampling
was conducted during all seasons. Vehicles were operated
without regard to weather, except during 1−2 exceptional storms
that precluded safe driving. The prevailing wind direction for the
study area was from the west (∼85% of all study hours; median
wind speed 4m s−1). A total of 2.7M 1-Hz observations, or 800 h,
on ∼16 000 unique 30 m road segments were collected in core
WO+DT+EO domain. Additional monitoring incorporated
interstate highways linking the study areas and car maintenance
garages (∼300 k 1-Hz measurements on ∼4500 unique 30 m
road segments). Further information about the study domain
and operational considerations are provided as SI, including
detailed maps (Figure S1−S2).

2.3. Data Reduction. We developed a series of data
reduction algorithms to convert our data set of ∼3 million
instantaneous observations into estimates of median annual
weekday concentrations for individual 30-m road segments. First,
we accounted for the possible biases of daily diurnal variation in
urban-background concentrations by applying an hourly multi-
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plicative adjustment factor to our 1-Hz mobile data based on
ambient concentrations at a regulatory fixed-site monitor in
WO.15,23,30,33 This adjustment approach makes the implicit
assumption that temporal patterns are spatially invariant. This
common assumption is conceptually imperfect but may be
acceptable for well-mixed daytime hours.15,23,30,33 In any case,
the temporal adjustment had only aminor (±10%) impact on the
observed spatial patterns in long-term concentrations, likely
because the numerous repeated measurements were already
balanced in space and time.
Next, we employed a “snapping” procedure to assign each 1-

Hz measurement to the nearest 30 m road segment on the basis
of measured GPS coordinates, thereby allowing repeated
measurements along the same road to be analyzed as a
group.15 We chose to use 30 m road segments for analysis
after weighing considerations of spatial resolution (smaller
segments show more spatial variability) and sample size (outliers
and GPS errors have proportionally greater influence when data
are “thinly sliced”). A virtue of this data reduction step is that it
ensures that road segments with a high number of raw 1-Hz
samples (e.g., owing to low average speeds) are not over-
represented in our spatial analyses: regardless of the number of 1-
Hz samples, a single point estimate of concentration is produced
for each road segment. We restrict our analysis to include only
the ∼21 000 road segments in our study domain with at least 10
unique days of measurement between 8 am and 6:59 pm local
time between 28 May 2015 and 18 May 2016. The typical road
segment contains ∼150−250 individual 1-Hz samples collected
on ∼20−50 distinct days. The SI provides further details on the
performance of our “snapping” and temporal adjustment
algorithms (see Figures S4−S5).
For each of the ∼21 000 road segments, we computed

distributional parameters of repeated 1-Hz observations. Similar
to some recent mobile monitoring studies,15,30 but unlike
others,28 we explicitly chose not to filter out “peak” 1-Hz
concentration measurements resulting from encounters with
other vehicles’ exhaust plumes in assessing spatial patterns. The
frequency with which plumes occur in space and time provides
valuable information about the conditions that give rise to on-
road concentrations.30 We evaluated both the median and mean
as metrics of central-tendency. In initial study design, we had two
a priori concerns about the possible use of the mean as a reliable
metric: First, that a small number of extreme outlier observations
(true concentration “peaks” or rare spurious measurements)
might bias our estimation of “typical” concentrations for each
road segment, and second, that if we under-sampled the tails of a
skewed concentration distribution, we might not obtain stable
means. Also, for a log-normal or similarly skewed distribution,
median is generally a more appropriate measure of central
tendency than is mean. Accordingly, we chose to use median
concentrations as our core estimate of central tendency for 30 m
road segments, and evaluated means in sensitivity analyses.
We used a set of bootstrap resampling procedures to quantify

the effect of sample-to-sample variability and sampling error on
the precision of central-tendency 30 m concentration estimates.
For each individual road segment, we computed the standardized
error (SE) of the median and mean concentration. As a metric of
precision, we consider normalized SE: the ratio of the standard
error of the median (mean) concentration to the median (mean)
concentration itself (SI Table S4). On average, the normalized
SE of individual 30 m median (mean) concentrations was low:
respectively 20% (21%), 16% (15%), and 9% (8%) for BC, NO,
and NO2. Road segment mean concentrations were well

correlated with medians (mean > median owing to positive
skew, r2∼ 0.6−0.9). In sum, for our sample size, central-tendency
concentrations can be estimated with good precision and
minimal sampling error from stochastic variability. For large
groups of road segments (e.g., all residential streets), we estimate
the precision of the central tendency to be within ≪1% of the
normalized SE.
The SI provides further information on bootstrapping and

precision calculations, comparisons between mean and median
metrics, and summary tables of raw and reduced data (SI Tables
S2−S3). The distributions of all ∼21 000 30 m-median road
segment concentrations for NO, NO2, and BC are positively
skewed, but based on a Kolmogorov−Smirnov test do not
conform to a single parametric distribution (SI Figure S6).

2.4. Stability Analysis: Monte Carlo Subsampling. We
utilize a subsampling analysis to investigate whether a less
intensive program of repeated monitoring can reproduce the
long-term pollution patterns observed from the full data
set.15,30,31 A specific question of interest here is whether there
is a point of “diminishing return,” beyond which additional repeat
driving provides relatively little added information.
We use Monte Carlo simulation to repeatedly subsample our

full data set to systematically introduce fewer days of driving for
analysis. Briefly, we randomly sample without replacement 1≤N
≤ 50 unique drive days at each location from our full data set.
Within our core domain, the mean road segment has 31 days of
sampling (10% trimmed range: 17−49 days). For each value of
N, we performed 250 random draws to produce 250 subsampled
“maps” of 30 m median concentrations. For road segments with
fewer than N days of sampling, the “subsampling” effectively
includes all observations collected over the duration of our
campaign. Thus, the subsampled maps converge to the result of
the full data set as N approaches the total number of unique
driving days for the full measurement campaign. We compute
three metrics to compare the performance of each subsampled
concentration map to that of our full data set. First, as a metric of
precision, we computed the r2 between each subsampled map
and the corresponding full data set of 30 m median
concentrations. Second, as a metric of bias, we compute the
normalized root-mean-square error (normalized RMSE, or
equivalently, the coefficient of variation of the RMSE, CV-
RMSE) as the square root of the mean of the squared difference
between each subsampled 30 m median concentration and its
corresponding median from the full data set. Third, as a metric of
the temporal stability of subsampled spatial patterns, we
computed the intraclass correlation (ICC) of each subsampled
iteration, grouped by 30 m road segments. For this application,
ICC values of 0.75−1 reflect large and systematic spatial
differences, with low residual temporal variability at each location
(see Section S1.5). We find that spatial variability dominates the
total variability in our data set, with ICC values in the range of
0.8−0.95 for all pollutants (see SI Table S5), indicating that our
observed long-term spatial patterns are robust to stochastic
variability among individual 1-Hz samples.

2.5. Data Mining: Spatial Patterns. We conducted two
“data mining” investigations to explore the determinants of the
spatial patterns that are revealed by our mobile monitoring data,
specifically (i) near-highway distance-decay relationships and (ii)
the effect of local, transient sources on spatial patterns.
Distance-decay relationships for pollutant concentrations near

major roadways have been documented in the literature,8,34,35

relying predominantly on experiments along carefully selected
near-highway upwind-downwind transects.35 Here, we demon-
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strate a “big data” approach that provides complementary
information, using our full mobile data set to characterize time-
averaged, isotropic (i.e., direction-independent) daytime dis-
tance-decay relationships. For every road segment within WO
and DT, we computed a distance-to-nearest-highway parameter
d (“spatial lag”). We bin all road segments by d, and compute the
median concentration as a function of spatial lag using 50 m bins.
For each pollutant we estimate a three-parameter exponential
distance-decay relationship for the mean highway normalized
concentration ratio as a function of spatial lag. The SI provides
further detail on this fitting approach.
To investigate how localized or transient emissions sources

contribute to the on-road concentrations measured by our
mobile monitors, we employed a peak detection algo-
rithm.25,28,36,37 The basic conceptual approach uses a moving-
window function to identify a localized concentration baseline,
and then attributes the difference between the measured value

and the baseline to short-duration concentration “peaks”. We
applied a 10 s moving average filter to the entire input data set to
prevent spurious extreme low values in the raw data (e.g.,
instrument noise) from influencing the baseline determination.
We established the concentration baseline for each second in this
10 s smoothed data set as the smaller of two quantities: the
instantaneous value in the data set, or the p = fifth percentile
concentration within a moving window of t = 120 s. By selecting
the fifth percentile, the algorithm identifies a value that is
representative of the cleanest local conditions, which are more
influenced by the urban background than by localized sources.
We chose t = 120 s to ensure that the time window was longer
than the typical traffic light cycle, but short enough that the
baseline concentrations on surface streets was established using
measurements collected within∼1 km of each location (30 km/h
for 2 min = 1 km).

Figure 1.High-resolution mapping of time-integrated concentrations. Annual median daytime concentrations for 30 m-length road segments based on
1 year of repeated driving for a 16 km2 domain in West Oakland [WO] and Downtown (a), and for a 0.6 km2 industrial-residential area in WO (b).
Median ± SE concentrations are tabulated by road type in c. Annual median daytime ambient concentrations Camb at a regulatory fixed-site monitor in
WO are plotted as shaded stars. Localized hotspots in b correspond to major intersections, industries, and businesses with truck traffic, and are
interspersed with lower-income housing (see aerial image). Locations of hotspots are similar among pollutants. d, Distributions of 780 1-Hz NO
measurements for a transect of eight 30 m road segments (see b, from point X to Y) to illustrate relationship between 1-Hz samples (∼100 per segment
over 1 year) and plotted long-termmedians (colored bars, blue horizontal lines). Elevated levels near midpoint of transect are associated with operations
at a metal recycler (see Figure 2).Wind rose data are provided in SI Figure S1, and show consistent westerly winds. Imagery © 2016 Google, map data ©
2016 Google.
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After establishing the baseline concentration, we derived the
peak fraction parameter PF by computing (i) the mean baseline
value over all repeated observations, and (ii) the mean 10s-
smoothed observed concentration. Then, we compute PF as 1.0
minus the ratio of the mean baseline value to the mean observed
concentration. Thus, PF is an indicator of the contribution to
mean observed levels on each road segment of concentrations
above the mean local baseline. While PF is inherently a
semiquantitative indicator metric that is somewhat influenced
by parameter choice, it usefully reveals spatial patterns in the
density and magnitude of local, transient emissions sources. As a
sensitivity analysis, we computed PF where the moving window
period t was doubled to 4 min. For that analysis, overall spatial

patterns in PF were nearly identical, but with an upward shift of
5−10% in PF: a longer window results in somewhat lower and
more spatially homogeneous baseline concentrations.

3. RESULTS AND DISCUSSION

3.1. Spatial Patterns and Hotspots. Our mobile
monitoring data set paints a vivid picture of within-urban
pollution patterns, revealing remarkable and stable heterogeneity
in daytime weekday pollutant concentrations (Figure 1, Figure
S7). Figure 1b illustrates fine-scale variability in pollution for an
indicative 0.6 km2 industrial/residential zone in West Oakland
(WO). Within this small area, time integrated 30-m median
primary pollutant concentrations vary by >5× within individual

Figure 2. Illustrative pollution hotspots. a. Street View and aerial imagery of themetals recycling cluster highlighted in Figure 4a−c. Frequent heavy-duty
and medium-duty truck traffic is evident in repeated Street View images. b,c. Multipollutant hotspots (i.e., prominent local concentration outliers) were
identified fromBC, NO, andNO2median concentrations as described in SI. Twelve illustrative hotspots labeled A−L here, overlaid on the 30mBCmap
in b for context. List in c enumerates possible emissions sources for each illustrative hotspot, with the following classification scheme for each pollutant:
(+) indicates a prominent localized hotspot or cluster of roads where concentrations are sharply elevated above nearby background levels, (∼) indicates
a less prominent hotspot or cluster with moderately elevated levels, and (×) indicates the absence of a clearly discernible hotspot. Imagery © 2016
Google, map data © 2016 Google.
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city blocks, and by >8× overall, as the result of local emissions
sources and traffic congestion. A surprising feature throughout
our data set is the ubiquity of persistent daytime “hotspots”
(length <100 m), tentatively classified as locations where
concentrations of multiple pollutants exceed nearby ambient
levels by 50% or more. Figure 2 presents data and plausible
causes for an indicative set of hotspots based on analysis of
Google Street View imagery. Examples include intersections
along a major truck route, vehicle repair facilities, and industrial
sites with associated truck traffic. As one indication of a localized
source, most hotspots show sharp spatial “peaks” for multiple
pollutants. (For the full data set, spatial patterns of 30 m-median
concentrations for the three pollutants are moderately
correlated, r2: BC-NO = 0.71, NO-NO2 = 0.57, BC-NO2 =
0.50). The SI provides further detail on the hotspot identification
scheme.
To demonstrate how hotspots consistently emerge from time-

resolved data, Figure 1d shows long-term median and 1-Hz
concentrations for the 240 m transect labeled X−Y in Figure 1b.
Over the short length of this transect, time-integrated median
NO levels rise and fall 4×. Concentrations are highest directly in
front of the entrance to a metals recycling facility, where the 1-Hz
distribution exhibits a large number of high NO concentrations.
SV and aerial photos show a high volume of trucks and heavy
equipment operating at this facility (Figure 2).
At broader spatial scales, pollutant levels differ substantially

among three major road classes: highways, arterial roads, and
residential streets (Figure 1). Median weekday daytime
concentrations for WO and Downtown Oakland (DT)
residential streets are approximately consistent with daytime
observations at a regulatory fixed-site monitor in West Oakland

(Figure 1c, road vs ambient: 0.41± 0.01 vs 0.50 μgm−3 BC, 5.3±
0.11 vs 3.5 ppb NO, 13.2 ± 0.18 vs 10.4 ppb NO2). In contrast,
concentrations on busier streets and highways are substantially
elevated above urban-background levels. For BC, median
highway [arterial] concentrations exceed those on residential
streets by a factor of 2.7 [1.3]; for NO by a factor of 4.8 [1.9]; and
for NO2 by a factor of 1.8 [1.3]. Atypically high pollutant
concentrations for a given road class are evident in several areas
of Figure 1, especially for NO and BC.Median concentrations on
city-designated truck routes linking highways to industrial areas
are 1.9−3.6× higher than on other surface streets (SI Table S6).
We observe consistently higher BC and NO levels (1.5−2.0×
higher) on I-880 (high truck density) than on I-580 (trucks
prohibited, see SI and Figure S8).

3.2. Distance-Decay Relationships. Between the extremes
of polluted freeways and cleaner residential streets, concen-
trations on average follow “distance-decay” relationships similar
to those observed elsewhere.8,9,34,35 An unconstrained three
parameter exponential model, C(d) = α + β exp (−3d/k),
reproduces the concentration-distance relationship C(d) with
high fidelity (r2 ≥ 0.96, see Figure 3). Here, the isotropic
parameter d reflects the distance to highways (m), the urban
background parameter α represents concentrations far-from-
highway (d → ∞), the near-road parameter β represents the
concentration increment resulting from proximity to the
highway, and the decay parameter k governs the spatial scale
over which concentrations relax to α. For all pollutants, estimated
values of (α + β) ∼ 1.0, indicating that the combined
contribution of the urban background and the near-highway
increment approaches the levels observed on highways.

Figure 3.Decay of concentrations frommajor highways into city streets for WO and DT. a. Plotted points represent the ratio of median concentrations
at a given distance from highways (d, “spatial lag”) to median on-highway concentrations; error bars present standard error from bootstrap resampling.
An unconstrained three parameter exponential model reproduces observed decay relationships with high fidelity. Here, the parameter α represents the
ratio of urban-background to highway concentrations (d→∞), β represents the additional increment in pollution at near-highway conditions, and the
decay parameter k governs the spatial scale of the decay process. The value of α is intermediate for BC (primary, conserved pollutant); lower for NO
(consumed rapidly during daytime by reaction with O3) and higher for NO2 (elevated background from regional secondary photochemical conversion
from NO). Data in SI demonstrate that parameter estimates are consistent among alternative fitting approaches. b. Distance-to-highway metric d for
surface streets in WO and DT, computed based on the harmonic mean distance of each surface street segment to closest portion of the four major
highways in the domain (see SI). Map data © 2016 Google.
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Results in Figure 3 represent average weekday daytime decay
patterns. These results reflect the average surface-street to
highway concentration ratio as a function of d; as averages, they
do not explore temporal differences (traffic, meteorology), the
impact of wind direction, or heterogeneity among individual road
segments. Interestingly, the fitted values of the parameters α and
β correspond closely (within ±5%) to the results of the
comprehensive meta-analysis of Karner et al. (2009).8

Consistent with expectations about sources and atmospheric
dynamics, our observed distance-decay relationships are sharpest
for NO, intermediate for BC, and most shallow for NO2. BC and
NO are primary air pollutants from combustion sources. Unlike
BC, NO is rapidly depleted during daylight hours by reaction
with ozone (NO + O3→ NO2, τ ∼ 1−5 min).38 Because most
(but not all39,40) daytime NO2 is formed through secondary
chemistry, spatial patterns of NO2 tend to bemore homogeneous
than NO or BC. Further analysis of the robustness of our decay

fitting approach and comparison with Karner et al. is provided as
SI.

3.3. Localized Concentration Peaks. To further elucidate
determinants of spatial patterns in air pollution, we mined the
time-resolved data that underlie long-term median concen-
trations. The time evolution of concentrations collected by a
mobile monitor reflects the superposition of (i) spatiotemporally
localized concentration peaks from primary emissions and (ii) a
comparatively less variable urban background condition.28,37

Figure 4a illustrates the application of our baseline-and-peak
decomposition algorithm to a 10 min excerpt from our WO
mobile monitoring data. Four coincident NO and NO2 peaks in
this time series correspond in space (Figure 4b,c) to roads on the
perimeter of the metals recycling facility illustrated in Figure 1b,
demonstrating how spatially localized peaks are superimposed
onto the urban background. For measurements at each 30m road
segment, we estimate the fractional contribution of localized

Figure 4. Identification of localized concentration peaks. a. Example 10 min time series of NO and NO2 on afternoon of 4/22/2016. Baseline-fitting
algorithm decomposes measurements (solid traces) into an ambient baseline component (dashed lines) and a high-frequency component indicative of
localized pollutant sources (“peaks”, difference between observation and baseline). Peak fraction PF indicates contribution of peaks to total sampled
mass. PF is high for NO (low baseline, sharp peaks), and low for NO2 (elevated ambient levels from photochemistry). Temporal progress along route
indicated by blue-white-red color scale in a, and mapped in space in b. The drive route for these 10 min is a 4 km sequence of right-hand turns. As
indicated by the time color scale in a and b, the starred NO peaks are spatially concentrated around a single city block with a scrap metal plant (marked×
in b and c, cf. Figure 1b and Figure 2a). c, Spatial concentration profile for this example period. d,e,f. Application of peak-separation algorithm to entire
data set. d,e. Blue-green-red color scale for PF quantifies fraction of mean concentration at each 30 m road segment attributable to transient peaks. f.
Median PF values by road class. Imagery © 2016 Google, map data © 2016 Google.
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sources to observed conditions (“peak fraction”, PF) as 1.0 minus
the ratio of the mean 30-m baseline concentration to mean 30-m
observed concentration (Figure 4d−f). (Thus, at any given
location, the observed 30mmedian concentration is algebraically
equivalent to the sum of the baseline plus peak contributions).
Median values of PF are highest for NO and BC (∼65%),
indicating the predominant contribution of transient localized
sources (e.g., traffic, industrial facilities). Spatial variations in PF
values (Figure 4d) reveal that the urban background dominates
NO levels on low-traffic residential streets (PF ∼ 25−40%),
whereas transient peaks govern concentrations on arterials (PF∼
60−80%) and near industrial facilities. In contrast, for NO2, PF is
consistently low (∼20%), reflecting the high baseline contribu-
tion from photochemistry. Future work could explore whether
PF and other derived metrics (e.g., pollutant ratios) may be
useful in representing the “freshness” of emissions to inform
epidemiological analyses of multipollutant mixtures.
Taken in combination, our findings suggest that consistent

spatial variability of air pollution exists at much finer scales than is
generally detected using conventional measurements and
predicted by models. Because hotspots are revealed through
repeated measurement, this approach may be useful for
evaluating the fine-scale performance of LUR and other models
that use spatial surrogate data. We demonstrate that weekday,
daytime primary pollutant levels persistently vary by a factor of
2−8× or more within neighborhoods and individual city blocks.
For the median road segment, the absolute concentration
difference from the single WO ambient regulatory monitor is
32% (BC), 61% (NO), and 35% (NO2) during weekday daytime
hours. Sparse monitoring networks may therefore provide an
imprecise approximation and underestimate the true variability
in heterogeneous population exposures.
The implications of these findings for population exposure and

public health depend in part on the degree to which on-road
concentrations can represent exposures. Many epidemiological
studies use predicted home-address concentrations as a proxy for
long-term personal exposures. These predicted home-address
concentrations are often based upon models derived from
roadside measurements given the ease of access to roadsides
(e.g., utility poles) for monitoring. Recent research suggests that
on-road concentrations can be well correlated with residential
address exposures, even when on-road concentrations are higher
than surrounding off-road areas owing to proximate traffic
emissions.17,41 Future work could validate the predictive power

of routine mobile monitoring data using either residential fixed-
site or personal exposure measurements.

3.4. Scaling and Future Prospects. Through systematic
subsampling of our weekday daytime measurement data set, we
find that 10−20 drive days (or 2−3× fewer data than collected
here) are sufficient to reproduce key spatial patterns with good
precision and low bias (Figure 5). The following trends hold: A
small number of drive days (N < 5) typically results in a poor
approximation of long-term spatial patterns from the full data set,
with generally low precision (r2) and high bias (CV-RMSE).
However, each additional sampling day, across a year, results in a
substantial improvement in r2 and CV-RMSE. For our data set,
diminishing returns for improvement in r2 set in at∼10−20 drive
days, with mean r2 for BC and NO approaching 0.7 after 10 days
of driving, and approaching 0.9 after 20−25 days of driving.
Mean values of ICC (SI Figure S9) are generally high for 10 or
fewer drive days, indicating that stochastic temporal variability
from a small number of drive days does not obscure an overall
spatially dominated pollution pattern. Similar conclusions on the
number of sampling days required for convergence to stable
patterns have recently been reported in studies using repeated
bicycle-based BC and PM measurements.15,30,31 Our sampling
was restricted to weekday daytime conditions; in general, spatial
patterns may differ at other times (nights, weekends, holidays).42

Future work may reveal whether similar scaling considerations
hold over a broader range of conditions, and in locales with less
consistent meteorology than Oakland.
This study demonstrates a straightforward approach for

dramatically increasing the spatial resolution with which air
pollution is measured. The instrumentation costs of this
technique using reference-grade monitors are perhaps com-
parable to those of traditional ambient monitoring. However, this
routine mobile monitoring approach can provide several orders
of magnitude more spatial information, albeit with lower
temporal resolution. Future developments in fast-response
low-cost sensor technologies could lower the costs of this
approach. Moreover, in future studies, a considerably less
intensive sampling scheme may provide similar results (Figure
5). Here, we employed Google SV vehicles to enable future
analyses of contemporaneous 3D imagery, but other vehicle
fleets (e.g., taxis, delivery vehicles, public transit) could routinely
collect analogous data by repeatedly driving fixed or variable
routes within a city. To facilitate scaling, our data reduction
algorithms could be easily automated. Equipping ∼500 such
vehicles could enable high-resolution mapping of the 25 largest

Figure 5. Scaling analysis through systematic subsampling. Using the systematic subsampling algorithm described in Section 2.4, we investigated the
relationship between number of drive days and metrics of precision and bias. a. Mean subsampled r2 as a function of 30 m-median road segment
concentrations relative to the full data set, plotted as function the number of unique drive days for BC, NO, and NO2. See SI for details of the
subsampling algorithm and r2 calculations. b. Mean subsampled coefficient of variation of root mean squared errors (CV-RMSE) versus the number of
unique drive days for BC, NO, and NO2.
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U.S. urban areas, which in combination account for∼50% [36%]
of the U.S. urban [total] population. Likewise, prior experience12

suggests that this approach could be extended to global
megacities (world’s 20 largest cities have 480 M people, >10%
of world urban population43) and to the thousands of other cities
where air quality management is impaired by an absence of
robust monitoring infrastructure. Future research could explore
whether this approach can effectively be translated to such
settings.
Routine availability of high-resolution air quality data in all

major urban areas could have transformative implications for
environmental management, air pollution science, epidemiology,
public awareness, and policy. By highlighting localized pollution
hotspots, these data may identify new opportunities for pollution
control. Street-level air quality data can complement, challenge,
and validate other diverse air quality data sets, including
regulatory data, CTM outputs, land-use regression predictions,
and remotely sensed observations. In turn, this refinement can
help address exposure misclassification in epidemiological
studies.44,45 Through combination with personal GPS data on
smartphone applications, rich “personal exposure analytics”
become possible,46,47 which could inform epidemiological
studies and alter personal behavior, much as real-time traffic
data now inform individual driving patterns. Broader societal
consequences of the public awareness enabled by high-resolution
pollution maps might include shifts in urban land-use decisions,
regulatory actions, and in the political economy of environmental
“riskscapes”.
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